Advanced Algorithms for Adaptive Filtering
نویسندگان
چکیده
In this paper, we evaluate the possibility to develop algorithms of adaptation for the applications system of acoustic echo cancellation, while maintaining equilibrium between its reduced calculation complexity and its adaptive performances. We present new algorithms versions of fast recursive least squares numerically stable (NS-FRLS). They are obtained by means of redundant formulas, available in the fast recursive least squares (FRLS) algorithms, to estimate numerical errors and to retroact them in an unspecified point of the algorithm in order to modify its numerical properties. These algorithms represent a very important load of calculation that needs to be reduced. we propose a new (M-SMFTF) algorithm for adaptive filtering with fast convergence and low complexity. It is the result of a simplified FTF type algorithm, where the adaptation gain is obtained only from the forward prediction variables and using a new recursive method to compute the likelihood variable. This algorithm presents a certain interest, for the adaptation of very long filters, like those used in the problems of echo acoustic cancellation, due to its reduced complexity, its numerical stability and its convergence in the presence of the speech signal. Its calculation complexity is of 6L (L is the finite impulse response filter length) and this is considerably reduced to (2L+4P) when we use a reduced P-size (P<<L) forward predictor. Key-Words: Fast RLS, NLMS, FNTF, Adaptive Filtering, Convergence Speed, Tracking capability.
منابع مشابه
A Family of Selective Partial Update Affine Projection Adaptive Filtering Algorithms
In this paper we present a general formalism for the establishment of the family of selective partial update affine projection algorithms (SPU-APA). The SPU-APA, the SPU regularized APA (SPU-R-APA), the SPU partial rank algorithm (SPU-PRA), the SPU binormalized data reusing least mean squares (SPU-BNDR-LMS), and the SPU normalized LMS with orthogonal correction factors (SPU-NLMS-OCF) algorithms...
متن کاملDelay Spoofing Reduction in GPS Navigation System based on Time and Transform Domain Adaptive Filtering
Due to widespread use of Global Positioning System (GPS) in different applications, the issue of GPS signal interference cancelation is becoming an increasing concern. One of the most important intentional interferences is spoofing signals. An effective interference (delay spoof) reduction method based on adaptive filtering is developed in this paper. The principle of method is using adaptive f...
متن کاملSpeech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering
This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS ...
متن کاملImage Restoration with Two-Dimensional Adaptive Filter Algorithms
Two-dimensional (TD) adaptive filtering is a technique that can be applied to many image, and signal processing applications. This paper extends the one-dimensional adaptive filter algorithms to TD structures and the novel TD adaptive filters are established. Based on this extension, the TD variable step-size normalized least mean squares (TD-VSS-NLMS), the TD-VSS affine projection algorithms (...
متن کاملA Total Ratio of Vegetation Index (TRVI) for Shrubs Sparse Cover Delineating in Open Woodland
Persian juniper and Pistachio are grown in low density in the rangelands of North-East of Iran. These rangelands are populated by evergreen conifers, which are widespread and present at low-density and sparse shrub of pistachio in Iran, that are not only environmentally but also genetically essential as seed sources for pistachio improvement in orchards. Rangelands offer excellent opportunities...
متن کاملAdaptive-Filtering-Based Algorithm for Impulsive Noise Cancellation from ECG Signal
Suppression of noise and artifacts is a necessary step in biomedical data processing. Adaptive filtering is known as useful method to overcome this problem. Among various contaminants, there are some situations such as electrical activities of muscles contribute to impulsive noise. This paper deals with modeling real-life muscle noise with α-stable probability distribution and adaptive filterin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009